Potential Mechanisms for Thrombocytopenia Development with Trastuzumab Emtansine (T-DM1)

Hirdesh Uppal,1a Estelle Doudement,1 Kaushiki Mahapatra,1 Walter C. Darbonne,2 Daniela Bumbaca,3 Ben-Quan Shen,3 Xiaoyan Du,2b Ola Saad,4 Kristin Bowles,5 Steve Olsen,6c Gail D. Lewis Phillips,7 Dylan Hartley,1d Mark X. Sliwkowski,7 Sandhya Girish,8 Donna Dambach,9 and Vanitha Ramakrishnan10

1Department of Safety Assessment, Genentech, Inc, South San Francisco, CA USA.

2Department of Oncology Biomarker Development, Development Sciences, gRED, Genentech, Inc, South San Francisco, CA USA.

3Department of Preclinical and Translational Pharmacokinetics and Pharmodynamics, Genentech, Inc, South San Francisco, CA USA

4Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA USA.

5Department of Protein Chemistry, Genentech, Inc, South San Francisco, CA USA.

6Department of Product Development, Genentech, Inc, South San Francisco, CA USA.

7Department of Molecular Oncology, Genentech, Inc, South San Francisco, CA USA.

8Department of Development Sciences, Genentech, Inc, South San Francisco, CA USA.

9Department of Small Molecule and Investigative Toxicology, Genentech, Inc, South San Francisco, CA USA.

10Department of Research.
Department of Project Management and Operations, Genentech, Inc, South San Francisco, CA USA.

Current affiliation: Department of Diagnostics, Medivation, San Francisco, CA; Department of Biologics Operations, Merck Research Laboratories, Palo Alto, CA USA; Current affiliation: Department of Global Medical Affairs-Oncology, AstraZeneca PLC, London UK; Current affiliation: Department of Drug Metabolism and Pharmacokinetics, Array Biopharma, Inc., Boulder, CO, USA.

Running title: The effect of T-DM1 on platelets and megakaryocytes

Keywords: ado-trastuzumab emtansine; Megakaryocyte; Platelet; T-DM1; Thrombocytopenia;

Financial Support: This study was supported by Genentech Inc.

Corresponding author: Vanitha Ramakrishnan, Project Management and Operations, 1 DNA Way, South San Francisco, CA 94080; Tel: 650-467-3912; Fax: 650-467-5476; E-mail: vanithar@gene.com

Conflict of interest: All authors were employees of and stockholders in Genentech, Inc. when the research was undertaken.

Word count: 4962

Tables: 1

Figures: 5

Supplemental appendix
Translational Relevance

These experiments may impact patient care by increasing our understanding of mechanisms of trastuzumab emtansine (T-DM1)–induced thrombocytopenia. T-DM1 is an antibody–drug conjugate recently approved for treatment of HER2-positive metastatic breast cancer. Thrombocytopenia was the dose-limiting toxicity in the phase I study, and the most commonly reported grade ≥3 adverse event in phase III studies. We investigated the effect of T-DM1 on human platelets and megakaryocytes ex vivo. Here we show that T-DM1 had no direct effect on platelet activation and aggregation. T-DM1 did, however, inhibit megakaryocyte differentiation from hematopoietic stem cells. This effect appears to be mediated by DM1 which was internalized by megakaryocytes in a HER2-independent, FcγRIIa-dependent manner. Our data support the hypothesis that impaired platelet production by megakaryocytes mediates much of the thrombocytopenia observed in clinical trials, and underscore the need to evaluate the role of Fcγ receptors in toxicities seen with antibody therapeutics on nontarget cells.
Abstract

Purpose: Trastuzumab-emtansine (T-DM1) is an antibody–drug conjugate (ADC) comprising the cytotoxic agent DM1 conjugated to trastuzumab with a stable linker. Thrombocytopenia was the dose-limiting toxicity in the phase I study, and grade ≥3 thrombocytopenia occurred in up to 13% of patients receiving T-DM1 in phase III studies. We investigated the mechanism of T-DM1–induced thrombocytopenia.

Experimental design: The effect of T-DM1 on platelet function was measured by aggregometry, and by flow cytometry to detect markers of activation. The effect of T-DM1 on differentiation and maturation of megakaryocytes (MKs) from human hematopoietic stem cells was assessed by flow cytometry and microscopy. Binding, uptake, and catabolism of T-DM1 in MKs, were assessed by various techniques including fluorescence microscopy, scintigraphy to detect T-[H³]-DM1 and ¹²⁵I-T-DM1, and mass spectrometry. The role of FcγRIIa was assessed using blocking antibodies and mutant constructs of trastuzumab that do not bind FcγR.

Results: T-DM1 had no direct effect on platelet activation and aggregation, but it did markedly inhibit MK differentiation via a cytotoxic effect. Inhibition occurred with DM1-containing ADCs but not with trastuzumab demonstrating a role for DM1. MKs internalized these ADCs in a HER2-independent, FcγRIIa-dependent manner, resulting in intracellular release of DM1. Binding and internalization of T-DM1 diminished as MKs matured; however, prolonged exposure of mature MKs to T-DM1 resulted in a disrupted cytoskeletal structure.
Conclusions: These data support the hypothesis that T-DM1–induced thrombocytopenia is mediated in large part by DM1-induced impairment of MK differentiation, with a less pronounced effect on mature MKs.
Introduction

One of the major limitations of systemic chemotherapy for cancer is the development of dose-limiting toxicity, caused by the exposure of nontumor cells to cytotoxic agents. Antibody–drug conjugates (ADCs) are composed of a cytotoxic agent conjugated to a targeted antibody via a covalent linker (1). ADCs are designed to deliver this cytotoxic agent selectively to tumor cells, thereby minimizing systemic toxicity.

Trastuzumab emtansine (T-DM1) is an ADC comprising the cytotoxic agent DM1 conjugated via a stable thioether linker to the humanized human epidermal growth factor receptor 2 (HER2)–targeted monoclonal antibody trastuzumab (2). T-DM1 binds to the HER2 receptor with an affinity similar to that of unconjugated trastuzumab (3). T-DM1 is internalized, and the active catabolite lysine-Nε-maleimidomethyl]cyclohexane-1-carboxylate (MCC)-DM1 is released by lysosomal degradation (4), resulting in microtubule destabilization and subsequent inhibition of cell division and proliferation of HER2-positive cancer cells (2, 3). Like trastuzumab, T-DM1 binding to cell surface HER2 results in antitumor activities—including mediation of antibody-dependent cellular cytotoxicity, inhibition of proliferative signaling through the PI3Kserine/threonine kinase (Akt) pathway, and inhibition of proteolytic cleavage of the extracellular domain of HER2—preventing shedding of HER2 into the circulation (3).

T-DM1 is approved for the treatment of patients with previously treated metastatic breast cancer. T-DM1 has been generally well tolerated with a lower incidence of grade ≥3 adverse events compared with trastuzumab plus docetaxel (46.4% vs. 90.9%) (5) and lapatinib plus capecitabine (40.8% vs. 57.0%) (6). Thrombocytopenia
was the dose-limiting toxicity with T-DM1 (10) and grade ≥3 thrombocytopenia was observed in 4.7% (7) to 12.9% (6) of patients in phase III studies. In most patients who receive T-DM1 once every 21 days, concentrations of circulating platelets show a pattern of cyclic decline, often below the normal range, followed by recovery to normal prior to the next dose (6, 8–10). While the predose platelet count remains consistent for the duration of the treatment course in many patients, others exhibit a slow downward drift in predose platelet counts with repeated cycles of T-DM1 (9). Other hematologic lineages appear to be relatively unaffected by T-DM1, with low rates of severe anemia, leukopenia, and neutropenia (5, 6). As with leukocytes and erythrocytes, platelets are not thought to express HER2 (11).

The aim of the current study is to investigate potential mechanisms of T-DM1–induced thrombocytopenia by evaluating the effect of T-DM1 on platelet function and on the differentiation of megakaryocytes (MKs) derived in vitro from human HSCs.

Materials and Methods

Platelet isolation

Platelet rich plasma (PRP) was isolated by low speed centrifugation of whole blood from normal human donors drawn into trisodium citrate containing bivalirudin and apyrase. For washed platelets (WPs), whole blood was obtained from normal human volunteers into acid citrate dextrose. WPs were prepared as described (12) by centrifugation twice in CGS buffer. Platelets were resuspended in Tyrodes-Hepes buffer at 2 × 10⁸/mL for further experiments. For activation experiments, CaCl₂ (final concentration 1 mM) was added, and platelets were allowed to rest for 15 minutes at room temperature before use.
Platelet activation

Platelet activation was measured by detecting activated GPIIb/IIIa (i.e., PAC1 binding) and P-selectin (CD62P) expression using flow cytometry. WP (100 µL of 2 × 10⁶/mL) or PRP were aliquoted into 96-well conical well plates and activated at 4°C for 10 minutes using collagen (1 to 10 µg/mL, Chronolog, Havertown, PA) or TRAP (~1 µM, Sigma-Aldrich, St. Louis, MO) as a positive control, or various test antibodies. Test antibodies included trastuzumab, T-DM1, and the control nonspecific ADC 5B6-DM1 (13). All three test antibodies are of IgG1 isotype. Platelets were diluted 1:1 with ice cold Tyrodes-Hepes buffer and aliquoted (40 uL aliquots) into triplicate wells containing PE-conjugated anti-CD41 antibody to identify platelets (3 µL) or isotype control and either FITC-conjugated anti-CD62P antibody or FITC-conjugated anti-PAC1 antibody (3 µL) or respective FITC-conjugated isotype controls. Following a one-hour incubation at 4°C, platelets were diluted and assessed by flow cytometry using a FACSCalibur (BD Biosciences, San Jose, CA). For experiments assessing the effect of the various test antibodies on agonist-induced activation, WP or PRP were preincubated with the test antibodies for 30 minutes at 4°C and then collagen or TRAP was added for an additional 10-minute incubation.

Platelet aggregation

WP (500 µL, 2 × 10⁹/mL) or PRP (500 µL, ~2 × 10⁹/mL) from normal human donors were pipetted into aggregometer tubes, and aggregation was initiated by the addition of collagen (Chrono-Log, Havertown, PA; 5 µL of 10 mg/mL solution; 10 µg/mL final concentration) or TRAP (1 uM) as positive controls, or various test antibodies or compounds; and measured in a lumiaggregometer (Chrono-Log 700; Chrono-Log,
Havertown, PA) with stirring (1,000–1,200 rpm) at 37°C. For experiments assessing the effect of the various test antibodies on agonist-induced activation, WP or PRP were preincubated with the test antibodies at 37°C for 30 minutes. Aggregation was initiated with collagen or TRAP and was quantified in a lumiaggregometer.

Differentiation of human MKs

HSCs (CD133+/CD34+) were purchased from ALLCELLS (Emeryville, CA). Briefly, these HSCs were enriched from bone marrow isolates of healthy donors using positive selection for CD133 and CD34. CD133+/CD34+ cells were first expanded in cytokine-enriched hematopoietic expansion media (StemSpan CC100; Stem Cell Technologies, Vancouver, Canada) for 5 days, then incubated in MK differentiation media (StemSpan CC100 supplemented with thrombopoietin [100 ng/mL], SCF [25 ng/mL], IL-3 [10 ng/mL], IL-6 [10 ng/mL], IL-1 [10 ng/mL], and IL-9 [10 ng/mL]), for 14 days to obtain multinucleated MKs. Evaluation of the MK differentiation process was performed by flow cytometry, using the MK-lineage specific markers CD41 and CD61 (Supplementary Fig. S1). To obtain mature MKs, day 14 MKs (i.e., immature MKs) were cultured in the same medium for an additional 14 to 16 days (Supplementary Fig. S1B).

MK production and cell viability

Determination of IC$_{50}$

To determine the IC$_{50}$ of T-DM1 on immature MKs, CD133+/CD34+ cells were resuspended in MK differentiation medium (750,000 cells/well) and treated with different concentrations of T-DM1, trastuzumab, 5B6-DM1, or vehicle (100 μg/mL, 25 μg/mL, 6.25 μg/mL, 1.56 μg/mL, 0.39 μg/mL, 0.098 μg/mL) for 14 days. At day 3, 6,
9, and 14, three aliquots (25 μL) from each well were evaluated for cellular ATP levels using CellTiter-Glo luminescence cell viability reagent (Promega, Madison, WI). The IC₅₀ concentrations were calculated using a four-parameter logistic regression model.

For maturing MKs (day 14 cells), aliquots (100 μL) of cells treated with T-DM1, trastuzumab, or 5B6-DM1 (6.25 μg/mL) at day 17, 20, 23, 28 post-differentiation were assessed in triplicate for ATP levels as described above.

Based on these experiments, a concentration of 6.25 μg/mL was used for all conjugates and antibodies for subsequent experiments (except where noted).

Flow cytometry analysis

CD133⁺/CD34⁺ cells (expanded for 5 days as described earlier), were induced to differentiate for 14 days to obtain immature MKs. Cells in MK differentiation medium were treated with T-DM1, trastuzumab, 5B6-DM1, or vehicle (6.25 μg/mL). At days 3, 6, 9, and 14 of differentiation, the viable cells were counted with an automated cell counter (ViCell, BeckmanCoulter, Brea, CA). MK number was determined as follows. An aliquot (500,000 cells per condition) was harvested and washed twice and then incubated for 30 minutes with APC-conjugated mouse anti-human CD41 (BD Pharmingen, San Diego, CA) and PE-conjugated mouse anti-human CD61 (Miltenyi Biotec Inc., Auburn, CA) in the dark at room temperature. Cells were then washed three times with FACs Stain Buffer (FSB; BD Pharmingen, San Diego, CA) by repeated centrifugation, resuspended in FSB (500 μL), and analyzed by flow cytometry gated for live cells with doublet exclusion and appropriate isotype-matched controls and unstained cells as negative controls. An anti-mouse IgG Compensation
Plus bead kit (BD Biosciences, San Jose, CA) was used for compensation. The MK cell number was calculated as follows for each condition and the percent of day 0 control was determined:

\[
\text{# MK cells per time point} = \left(\frac{\% CD41^+/CD61^+}{100} \right) \times \text{# of viable cells in the sample}
\]

For ploidy determination, HSCs (CD133+/CD34+) were expanded for 5 days and differentiated into MKs for 30 days in the presence of antibodies (25 µg/mL). Cells were harvested on selected days during MK differentiation and maturation, washed with cold PBS (0.5 mL) and resuspended in FSB (100 µL) and stained for 5 minutes in the dark at room temperature with Hoechst 33342 (1:10,000; Molecular Probes, Life Technologies, Grand Island, NY). The cells were washed three times resuspended in FSB (500 µL), and analyzed by flow cytometry using Cytobank Flow Cytometer Data Analysis Software (Cytobank, Inc., Mountain View, CA).

Quantification of catabolites by liquid chromatography–tandem mass spectrometry

Catabolite (DM1, MCC-DM1 and Lys-MCC-DM1) concentrations were determined in MK extracts prepared from days 0, 9, and 20. For analysis of MCC-DM1 and Lys-MCC-DM1, an aliquot (30 µL) was extracted by protein precipitation using 80/20 acetonitrile/water (120 µL) containing maytansine (7.5 nM) as an internal standard. To measure DM1, an aliquot (30 µL) of the MK lysates was first treated at 37°C for 15 minutes at pH 6.6 with Tris(2-carboxyethyl)phosphine (1.25 µL, 26 mM; ThermoScientific Pierce, Rockford, IL) to release any disulfide-bound DM1, and then extracted as described above. The free sulfhydryl on DM1 was blocked by conversion to DM1 N-ethyl maleimide (NEM) (7.9 µL, 25 mM, Sigma-Aldrich, St Louis, MO) by incubation at 37°C for 45 minutes with NEM.
Liquid chromatography–tandem mass spectrometry analysis of the extracted samples was conducted using chromatography on a C12 analytical column (Synergi MAX RP 80 A; Phenomenex, Torrance, CA), followed by TurboIon Spray ionization using an AB SCIEX QTRAP 5500 mass spectrometer (AB SCIEX, Foster City, CA). Multiple reaction monitoring scan mode was used for quantification. Transition 845.1/485.1 was monitored for DM1-NEM, 738.2/547.2 for DM1, 975.2/547.5 for MCC-DM1, 1103.2/485.2 for Lys-MCC-DM1, and 692.3/547.4 for maytansine. The DM1-NEM standard curve had a linear range from 0.488 nM to 500.0 nM. The DM1 transition was monitored only to ensure the completion of the NEM derivatization reaction. The MCC-DM1 standard curve had a linear range from 1.953 nM to 500.0 nM, and the Lys-MCC-DM1 standard curve had a linear range from 0.488 nM to 500.0 nM. Data were analyzed using Analyst 1.5.2 software (AB SCIEX, Foster City, CA).

Binding and internalization of T-DM1 by MKs

Alexa Fluor 488–conjugated trastuzumab and Alexa Fluor 488–conjugated T-DM1 (both at 25 µg/mL) were prepared in the Research Conjugation Lab (Genentech Inc., South San Francisco, CA) by covalent conjugation of Alexa Fluor 488 to proteins via primary amines at a molar fluor-to-antibody ratio of 2:2 and 0.8 for trastuzumab and T-DM1, respectively. MKs (differentiated for 14 days) were preincubated for 10 minutes with or without a blocking anti-CD32 antibody (Miltenyi Biotec, Auburn, CA). The cells were washed twice with FSB (500 µL) and incubated for 30 minutes in the dark at room temperature with the Alexa Fluor 488–conjugated antibodies (25 µg/mL). The stained cells were plated onto collagen-coated chamber slides (BD Biosciences, San Jose, CA) and ProLong Gold Antifade Reagent (Life Technologies,
[507x50]13

NY) was added to the slides before microscopy on an Olympus IX83 motorized inverted fluorescence microscope (Olympus, Central Valley, PA).

Uptake of radiolabeled antibodies

To assess the contribution of FcγRIIa, the Fc receptor that is expressed on human MKs (14) and platelets (15), to the uptake of T-DM1, we evaluated the uptake of both the parent antibody trastuzumab and a mutant version of trastuzumab (trastuzumab-DANA), in which the Fc region has two mutations, D265A and N297A (16), such that it no longer binds Fcγ receptor. Both forms of trastuzumab were radioiodinated with 125I using Iodogen as previously described (17). $[^{125}I]$-trastuzumab and $[^{125}I]$-trastuzumab-DANA antibodies were purified using NAP5TM columns (GE Healthcare Life Sciences, Piscataway, NJ) pre-equilibrated in PBS. The specific activities of $[^{125}I]$-trastuzumab and $[^{125}I]$-trastuzumab-DANA were 11.0 Ci/g and 10.1 Ci/g, respectively. The radiolabeled antibodies were shown to be intact by size-exclusion HPLC (data not shown). Uptake of these antibodies was used to determine uptake kinetics since 125I–labeled antibodies clear from cells following intracellular antibody degradation.

Both forms of trastuzumab were also conjugated to 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) and then radiolabeled with 111InCl (MDS Nordion, Ottawa, ON, Canada). (18) $[^{111}In]$-trastuzumab and $[^{111}In]$-trastuzumab-DANA antibodies were purified using NAP5TM columns (GE Healthcare Life Sciences, Piscataway, NJ) pre-equilibrated in PBS. The radiolabeled antibodies were shown to be intact by size-exclusion HPLC (data not shown). Uptake of these antibodies was used to determine overall antibody exposure since 111In catabolites accumulate in cells owing to the residualizing properties of the charged and highly...
polar DOTA chelator.

The uptake and catabolism of labeled antibodies were determined as follows. At day 0, labeled antibodies (1.0 \(\mu \text{Ci/mL} \)) were added to the cells \((4 \times 10^6)\) at the indicated time points. Cells were harvested and washed three times \((0.5 \text{ mL each})\). Incubation media and wash supernatants were collected and used for radioactivity determination. Radioactivity associated with the cell pellet, as well as the media and washes, were quantified by gamma scintigraphy. The percent radioactivity per \(10^6\) cells for each fraction was determined.

Results

Effect of T-DM1 on platelet activation and aggregation

To determine if the thrombocytopenia observed in T-DM1–treated patients was caused, at least in part, by a direct effect on mature platelets, we evaluated the effects of T-DM1 and DM1 on the function of platelets isolated from normal donors. Platelets were isolated and utilized either as PRP or WP, as described in the Methods section, and incubated with T-DM1, DM1, or controls. Neither T-DM1 nor DM1 directly induced platelet activation in PRP, as measured by the expression of activated GPIIb/IIIa (i.e., PAC1 binding) (Fig. 1A) and CD62P (Fig. 1B). Expression of these activation markers were similar between resting platelets and platelets treated with T-DM1, trastuzumab, control ADCs, and DM1.

T-DM1 also did not directly induce platelet aggregation in PRP (Fig. 1C) or in WP (Supplementary Fig. S2). To determine whether DM1 induces platelet aggregation, we exposed PRP to DM1 concentrations in the range of those measured in patients treated with T-DM1. On average, maximum systemic plasma DM1 concentrations
are 6 ng/mL (8 nM) (19). In PRP, DM1 did not directly induce platelet aggregation at these concentrations (Fig. 1D).

Next we evaluated the impact of T-DM1 and DM1 on agonist-induced platelet activation and aggregation. Neither T-DM1 nor DM1 had an effect on agonist-induced platelet activation in PRP. Increased PAC1 binding and CD62 expression induced by collagen or TRAP were unaffected by pretreatment with T-DM1, trastuzumab, or control ADC (Fig. 2A and 2B), or by clinically relevant concentrations of DM1 (Fig. 2C and 2D). Similarly, neither T-DM1 (Fig. 2E) nor clinically relevant concentrations of DM1 affected agonist-induced platelet aggregation (Fig. 2F). However, at high concentrations (i.e., 100 μM, which is ~12,500-fold higher than concentrations measured in patient samples), DM1 inhibited agonist-induced platelet aggregation by 77% (Supplementary Fig. S3).

Effect of T-DM1 on MK differentiation from HSCs

In the absence of a direct, observable effect on platelet activation or aggregation, we evaluated the potential effects of T-DM1 on generation of MKs from HSCs (i.e., CD133+/CD34+ cells) over time.

Morphology

On day 9 of differentiation, trastuzumab had no observable effect on MK morphology compared with vehicle control (Supplementary Figs. S4A and S4B). However, treatment with the ADCs T-DM1 or 5B6-DM1 during HSC differentiation altered the cell morphology, inducing a vacuolated morphology consistent with MK death (20) (Supplementary Figs. S4C and S4D, respectively).

Overall viability
Differentiation of HSCs into MKs can be monitored via the expression of the specific MK markers CD41 and CD61. In our *in vitro* model, the percentage of CD41-expressing cells increases over time during differentiation, reaching approximately 70% to 90% at day 14, depending on the donor (Supplementary Fig. S1).

We investigated the effect of T-DM1 on HSCs differentiating into MKs and determined the dose-response relationship of this effect (Fig. 3A). T-DM1 appeared to decrease the number of MKs by day 3 with an approximate IC₅₀ of 7 μg/mL (~50 nM). Decreased MK viability after T-DM1 treatment was more pronounced at day 6 with an IC₅₀ of approximately 3 μg/mL (~20 nM), and the IC₅₀ remained stable through day 14. Trastuzumab did not decrease MK viability at any dose or time point, while the control ADC 5B6-DM1 showed similar viability decreases as T-DM1, suggesting that the T-DM1 effect was due to its DM1 component and not its trastuzumab component.

Viability of immature MKs

To further investigate the effect of T-DM1 on differentiation of HSCs into MKs, we used flow cytometry to measure total cell number, number of MKs (i.e., CD41+/CD61+ cells), and cell viability at day 3, 6, 9, and 14 of differentiation (Figs. 3B, 3D). The number of vehicle- and trastuzumab-treated cells increased over the 14-day time course, reaching a maximal increase of 120-fold over day 0. Continuous exposure of HSCs to DM1 conjugates resulted in a marked decrease relative to vehicle-treated and trastuzumab-treated cells in the percentage of MKs (Fig. 3B). Decreased MK production was observed as early as day 6 (~50%), and MK numbers decreased further at day 9 (~90%) and remained at this level at day 14. These changes in MK cell number correlated with a decrease in cell viability (Fig. 3D).
These results suggest that decreased cell viability of HSCs differentiating into MKs induced by T-DM1 is mediated by the chemotherapeutic component of T-DM1 (i.e., DM1) and not by the antibody (i.e., trastuzumab).

Viability of maturing MKs

We conducted similar experiments to determine the effect of T-DM1 on maturing MKs (i.e., day 14-28 of differentiation). By day 28, the number of control- and trastuzumab-treated MKs had increased by ~100% compared with day 14 control- and trastuzumab-treated cells (Fig. 3C). As early as day 20, there was an observable reduction in MK cell number (~40%) in the T-DM1– and 5B6-DM1–treated cells. MK numbers decreased further at day 23 (~75%) and remained at this level at day 28 though this decrease in MK cell number was not as great as that seen in differentiating MKs. The decreases in MK cell number correlated with a decrease in cell viability (Fig. 3E).

Taken together, these data suggest that T-DM1 has a cytotoxic effect on both differentiating and maturing MKs that is mediated by its DM1 component and that the effect is more pronounced in differentiating MKs than in maturing MKs.

Effect of T-DM1 on MK ploidy

To further investigate the effect of T-DM1 on MK differentiation from HSCs, we used flow cytometry to evaluate cell ploidy over time (Fig. 4). We observed the expected progression of MK ploidy in the control HSCs over time, with a gradual shift of the cell population from largely 2N at day 4 to a broad population of 64N to 128N cells by day 30. Continuous exposure of developing MKs to DM1-containing ADCs (T-DM1 or 5B6-DM1) arrested the normal progression of megakaryocytogenesis, as
evidenced by inhibition of increased nucleoploidy as early as day 10, resulting in a single broad peak of predominantly 2N to 4N cells by day 30. Unconjugated trastuzumab did not appear to affect megakaryocytopoiesis as trastuzumab-treated HSCs showed a similar nucleoploidy pattern as control-treated cells.

MK uptake and catabolism of T-DM1

To determine if the reduction in MK number and the arresting of MK development following exposure to T-DM1 was due to the uptake of T-DM1, we assessed the time course of T-[³H]-DM1 uptake in HSCs differentiating into MKs. Uptake of T-DM1 was dependent on the differentiation stage of the cells with the greatest uptake occurring day 0 through 6 (Supplementary Fig. S5A, protein-bound DM1). The intracellular concentrations of T-DM1 catabolites over time are shown in Table 1. These data are consistent with the viability data demonstrating that precursor MKs (i.e., differentiating MKs), are more sensitive to treatment with DM1-containing antibodies than maturing MKs. In contrast to its pathway in tumor cells (4), T-DM1 was not detectable in lysosomes, as indicated by a lack of co-staining of T-DM1 and the lysosomal marker Cy3-LAMP1 (Supplementary Fig. S5B).

To determine if the uptake of T-DM1 was mediated (completely or in part) through HER2, we first determined whether isolated MK lineage cells (day 14) express HER2. HER2 mRNA was not detected in platelets (Supplementary Fig. S6A) and was detected at only very low levels in CD61− and CD61+ MKs (0.09 and 0.06, respectively, relative to the housekeeping gene *HP1BP3* [mRNA levels = 1]). In contrast, MCF-7 breast cancer cells and normal keratinocytes, which are considered to express normal levels of HER2, show HER2 mRNA expression levels of 1.08 and 1.28, respectively, compared with *HP1BP3*. Furthermore, Western blot analysis of
HER2 expression in MK lineage cells (CD61+ and CD61– populations) and purified platelets (Supplementary Fig. S6B) demonstrated no detectable HER2 protein, indicating that T-DM1 uptake, as well as other effects of T-DM1 on these cells, is not HER2-mediated. These data suggest that the entry of DM1 conjugates into MKs does not occur through HER2 but apparently through binding to FcγRIIa. Trastuzumab, T-DM1, and 5B6-DM1 are all IgG1 isotypes.

To determine whether T-DM1 is internalized by FcγRIIa, fluorescently labeled T-DM1 and trastuzumab were incubated with MKs and evaluated over time. Both T-DM1 (Figs. 5A, 5C) and trastuzumab (Figs. 5B, 5C) showed clear binding to the surface of MKs. Flow cytometric analysis of the surface-bound fluorescent antibodies indicated that maximal binding occurred at 4 hours (Fig. 5C). By 8 hours, the antibodies had been internalized and detection on the cell surface was significantly decreased. When MKs were preincubated with the FcγRII-blocking antibody anti-CD32, surface binding and internalization of both fluorescently labeled T-DM1 (Figs. 5A, 5C) and trastuzumab (Figs. 5B, 5C) were markedly decreased (>50%), indicating that FcγRIIa at least partially contributes to the mechanism of T-DM1 and trastuzumab binding and uptake.

To confirm that the uptake of T-DM1 into MKs is HER2-independent and at least partially mediated by FcγRIIa, we evaluated the MK uptake of trastuzumab using two different radioprobes, 125I-labeled trastuzumab and 111In-labeled trastuzumab, in order to mitigate any experimental bias caused by the specific properties of the probe. In general, 125I is rapidly diffusible from cells following intracellular antibody degradation, and therefore the cell associated 125I represents the kinetics of uptake at that time point; while 111In catabolites tend to accumulate in cells because of
properties of the chelator, and therefore, the cell-associated 111In represents overall antibody exposure (21). The kinetics of uptake were compared with those of similarly labeled trastuzumab-DANA mutants that lack FcγR binding. At day 0, 111In-trastuzumab-DANA uptake was less than 111In-trastuzumab uptake by 88%, and 125I-trastuzumab-DANA uptake was less than 125I-trastuzumab uptake by 98% (Figure 5D). Similarly, at day 3 125I-trastuzumab-DANA uptake was less than 125I-trastuzumab uptake by 99% (Figure 5E). Both 125I- and 111In-labeled antibodies showed similar trends, indicating that differences in the internalization of the trastuzumab-DANA could not be ascribed to the probe. These data provide further support for an essential role for FcγRIIa in MK uptake of T-DM1.

Effect of T-DM1 on intracellular tubulin and actin microfilaments in maturing MKs

Flow cytometry forward and side scatter analysis suggested that maturing MKs (i.e., d 14 to 28) treated with T-DM1 were larger and more granular than untreated mature MKs (data not shown). To determine whether prolonged T-DM1 exposure has an effect on intracellular microfilament structures, we evaluated the effect of 9 days of T-DM1 exposure on these structures in maturing MKs (i.e., day 14 of differentiation from HSCs). Under control-treated conditions (Supplementary Figs. S7A and S7C), 23-day-old MKs were large and multinucleated, with tubulin and actin clearly delineated. Following prolonged exposure to T-DM1 (Supplementary Figs. S7B and S7D), the microfilament structure had collapsed and appeared diminished and disorganized, suggesting that prolonged exposure to T-DM1 can have a detrimental effect on maturing MKs.
Discussion

Drug-induced thrombocytopenia is relatively common and has been described for hundreds of agents. (22) This disorder primarily occurs via two distinct mechanisms: 1) decreased platelet production via cytotoxic effects on MKs and their precursors as observed with some cytotoxic chemotherapeutic agents (23) and 2) accelerated platelet destruction in peripheral blood via immune-mediated thrombocytopenia (24) and as observed with a number of drug classes including non-steroidal anti-inflammatories, and sulphonamides (24).

The present study suggests that the thrombocytopenia observed in some T-DM1–treated patients is not immune-mediated and may result from decreased platelet production which is consistent with inhibition of MK differentiation, with no direct functional effect on platelets. The most pronounced effects of T-DM1 appear to occur during the differentiation process from HSCs to MKs. Our data show that trastuzumab, T-DM1, and a control DM1-containing ADC were all internalized by MKs and that HER2 was not expressed on MKs or platelets. Internalization could be inhibited by either blockade of the interaction between FcγRIIa using anti-CD32 or by using the Fc mutant trastuzumab-DANA, which is unable to bind FcγR. Furthermore, the observed effect on MKs occurred with T-DM1 and the control DM1-containing ADC, but not with trastuzumab. These data support the hypothesis that the effects on MK formation are mediated by the DM1 component of T-DM1 but require an interaction of the Fc domain of T-DM1 with FcγRIIa for internalization. The mechanism of release of the DM1 moiety from the internalized complex is at present unknown, as we could not detect co-localization of the internalized antibody with lysosomal LAMP1 by immunofluorescence.
Our data are consistent with a previous report which found—using different methods—that T-DM1 induced platelet decreases by decreasing platelet production via an effect on the cytoskeleton of differentiating MKs (13). The proposed mechanism of decreased platelet production (ie, cytoskeletal disruption in differentiating MKs) is also consistent with our data, showing cytoskeletal disorganization in maturing MKs when they were subjected to prolonged T-DM1 exposure (Supplementary Figs. S7B and S7D). We also show effects in earlier stages of differentiation and speculate that this occurs via a similar mechanism. Our data differ from those reported by Thon et al. in that these investigators concluded that T-DM1–induced thrombocytopenia occurs via a mechanism that is both HER2- and FcγRIIa-independent, based on the controls used and due to the fact that mouse MKs and platelets do not express FcγRIIa (25). Our data clearly demonstrate an FcγRIIa-dependent mechanism of internalization of T-DM1 in human MKs. Differences between the results found in the two studies could be attributed partly to differences in experimental methodologies and species differences.

T-DM1–mediated effects appeared to be more pronounced in differentiating MKs (i.e., day 0 to day 14 cells) than in maturing MKs (day 14 to day 28 cells). Differentiating MKs bound, internalized, and catabolized T-DM1 to a much greater degree than maturing MKs. However, T-DM1 did have an effect on maturing MKs as noted, above. T-DM1 exposure resulted in decreased cell viability (but to a lesser extent than that seen in differentiating MKs) and induced disruption of the cytoskeletal structure in these cells.

The mechanisms of T-DM1–induced thrombocytopenia described here are consistent with the pattern of cyclic decline and rebound of platelet levels seen
during treatment with T-DM1 (9, 10). In most patients receiving T-DM1, platelet levels show an acute drop and reach a nadir during cycle 1 and return to baseline levels between doses (6, 8-10). Some patients do exhibit a slow drift downward in platelet counts with repeated cycles of T-DM1, resembling the pattern induced by cumulative myelosuppression seen with other cytotoxic agents (9). However, even in those patients with a slow downward shift in platelet levels over subsequent cycles, platelet counts tend to stabilize at a level less severe than grade 3 thrombocytopenia (9). Indeed, grade 3 or higher thrombocytopenia occurred in only 4.7% to 12.9% of patients in the phase III studies with T-DM1 (6, 7). The kinetics of thrombocytopenia seen during treatment suggest that T-DM1 affects a specific platelet precursor pool. We further hypothesize that depletion of this pool results in either a shift in the equilibrium in the bone marrow to generate more platelet precursor cells to manage the platelet depletion (26) or that a new lineage that is less sensitive to T-DM1 becomes dominant and platelet counts stabilize (9), or both. This hypothesis is consistent with our in vitro studies which show a profound effect on platelet precursors (proliferating MKs).

In phase 3 studies of T-DM1 other severe hematological toxicities occurred with much lower frequency than thrombocytopenia. Grade ≥3 anemia occurred in 2.7% of patients, grade ≥3 neutropenia occurred in 2.0% to 2.5%, and grade ≥3 leucopenia occurred in <2% of patients (6, 7). These clinical data are consistent with an FcγRIIa-dependent mechanism since FcγRIIa is expressed at relatively low (or absent) levels in CD34+ cells isolated from human cord blood (27) and in lymphocyte lineages in normal human bone marrow (28). However CD32 is expressed in myeloid lineages (28). It is interesting to speculate that the small fraction of patients who exhibit a slow downward drift in platelet counts over time may indeed have a polymorphism(s) in
FcγRIIa or a different pattern of FcγRIIa expression which renders their MKs and/or other hematologic lineage precursors (myeloid) more susceptible to T-DM1.

Additional studies to evaluate biomarkers (such as FcR polymorphisms) associated with increased susceptibility to T-DM1–induced thrombocytopenia are underway to further characterize the mechanism of T-DM1–induced thrombocytopenia.

The cyclical pattern of platelet counts over time seen in clinical studies may be explained by the interaction between T-DM1 and FcγRIIa. The affinity of human IgG1 for FcγRIIa is 0.85-0.90 μM (29). At the established clinical dose of 3.6 mg/kg q3w, the observed C_max of T-DM1 is 83.4 μg/mL (30). At this concentration the occupancy of FcγRIIa would be expected to be ~35%. We postulate that binding of T-DM1, near or at its C_max, to FcγRIIa drives sufficient transient internalization and subsequent degradation of the conjugate to release DM1. This in turn impairs the proliferation and differentiation of proplatelet presursor(s), which temporarily depletes this species from contributing to platelet production. The transient nature of the binding, internalization, and degradation process may then explain the transient and reversible nature of the thrombocytopenia observed in patients treated with T-DM1.

Taken together, these data support the hypothesis that the thrombocytopenia observed in clinical trials with T-DM1 is mediated in large part by impaired platelet production from MKs within the bone marrow. We further hypothesize that other ADCs with an IgG1 backbone conjugated to a tubulin inhibitor via an MCC linker could potentially result in a clinical risk for dose-limiting thrombocytopenia.
Acknowledgments: The authors would like to thank Jay Tibbitts, Jun Guo, Guangmin Li, and Neelima Koppada. Support for third-party writing assistance, furnished by Holly Strausbaugh, was provided by Genentech, Inc.
References

Table 1 T-DM1 catabolites quantified in megakaryocytes at day 0, 9, and 20.

<table>
<thead>
<tr>
<th>Time</th>
<th>Concentration (nM)(^{a,b})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DM1(^c)</td>
</tr>
<tr>
<td>Day 0, experiment 1(^d)</td>
<td>4.03</td>
</tr>
<tr>
<td>Day 0, experiment 2(^d)</td>
<td>4.30</td>
</tr>
<tr>
<td>Day 9, experiment 1</td>
<td>8.74</td>
</tr>
<tr>
<td>Day 9, experiment 2</td>
<td>1.57</td>
</tr>
<tr>
<td>Day 20, experiment 1</td>
<td>3.02</td>
</tr>
<tr>
<td>Day 20, experiment 2</td>
<td>3.25</td>
</tr>
</tbody>
</table>

\(^a\)Processed against appropriate curves; day 20 samples processed against curves from day 9 megakaryocytes.

\(^b\)LLOQ for DM1 = 0.488 nM; LLOQ for MCC-DM1 = 1.953 nM; LLOQ for lys-MCC-DM1 = 0.488 nM.

\(^c\)Free DM1 was converted to DM1-NEM for quantification.

\(^d\)Experiment 1 and 2 indicate data from two different donors.
Figure Legends

Figure 1 T-DM1 does not induce activation or aggregation of platelets. Effects of T-DM1, trastuzumab, DM1, and control antibody–drug conjugates (anti-CD22-MCC-DM1, trastuzumab-sppDM1) on *ex vivo* platelet activation in platelet-rich plasma by flow cytometry to measure PAC1 binding (A) and CD62P (P-Selectin) (B) expression using collagen and TRAP as positive controls. Isotype-matched controls were used as negative controls for flow cytometry. Representative data with standard deviations are shown. (C) Effects of T-DM1, trastuzumab, and a control antibody–drug conjugate (anti-CD22-MCC-DM1) on *ex vivo* platelet aggregation in platelet-rich plasma. (D) Effects of various concentrations of DM1 on *ex vivo* platelet aggregation in platelet-rich plasma. All experiments were conducted in duplicate on platelets from two different donors, and representative data are shown.

Figure 2 Neither T-DM1 nor DM1 inhibit agonist-induced platelet activation or aggregation. Platelet rich plasma was incubated with T-DM1, trastuzumab, or anti-CD22-MCC-DM1 followed by collagen or TRAP as described in Methods. (A) PAC1 binding and (B) CD62P expression. (C) PAC1 binding and (D) CD62P expression were assessed in platelet rich plasma that had been preincubated with various concentrations of DM1 followed by collagen or TRAP. Activation markers were determined by flow cytometry. (E) Platelet-rich plasma was preincubated with T-DM1 (E) or DM1 (F) with appropriate controls. Aggregation was induced with collagen or TRAP.

Figure 3 DM1 conjugates inhibit megakaryocyte production and viability. HSCs were differentiated into megakaryocytes for 14 days and matured for 14 additional days with continuous exposure to the various drugs. (A) At day 0 HSCs from two donors
were incubated with various concentrations of T-DM1, trastuzumab, or control antibody–drug conjugate 5B6-DM1. Cell viability was assessed by flow cytometry at days 3, 6, 9, and 14, and the IC\textsubscript{50} for each drug was determined. The effect of T-DM1, trastuzumab, and 5B6-DM1 (all at 6.25 μg/mL) on the number of megakaryocytes over time during (B) differentiation and (C) maturation was assessed. Flow cytometry was used to quantify megakaryocytes using CD41 as a marker. Data are expressed as % day 0 Control (0.23 × 106 megakaryocytes at day 0). The effect of T-DM1, trastuzumab, and 5B6-DM1 (all at 6.25 μg/mL) on cell viability over time compared with control during (D) differentiation and (E) maturation was assessed. Average data from two donors are shown.

Figure 4 T-DM1 arrests megakaryocytogenes as indicated by ploidy analysis.

HSCs were induced to differentiate into megakaryocytes in the presence of vehicle control, trastuzumab, T-DM1, or a control antibody–drug conjugate 5B6-DM1. Cells were assayed for ploidy by flow cytometry on samples collected daily for 30 days.

Figure 5 Fc\textgamma RIIa mediates T-DM1 internalization. Fluorescently conjugated (A) T-DM1 and (B) trastuzumab are internalized by megakaryocytes (differentiated from HSCs for 14 days) (panels 1–3). Preincubation with the FcR\textgamma I–blocking antibody anti-CD32 results in a marked decrease in fluorescently labeled T-DM1 (A, panels 4–6) and trastuzumab (B, panels 4–6) with greater surface localization. (C) Quantification of surface binding of T-DM1 and trastuzumab, as assessed by flow cytometry. (D) Uptake of 111In-trastuzumab, 111In-trastuzumab-DANA, 125I-trastuzumab and 125I-trastuzumab-DANA in HSCs at day 0 of differentiation as indicated by total counts per minute. (E) 125I-trastuzumab and 125I-trastuzumab-
DANA in HSCs at day 3 of differentiation as indicated by total counts per minute.

Error bars indicate SD.
Figure 1

A. PAC1 Binding

B. CD52P expression

C. % of PAC1/CD52P cells over time

D. % of CD52P/CD52P cells over time
Figure 4
Figure 5

A. T-DM1 on MK
With anti-CD32

B. Trastuzumab on MK
With anti-CD32

C. Graph showing the percentage of cells bound by antibody at 2, 4, and 8 hours.

D. Graph showing the percentage of cells bound by antibody at Day 0.

E. Graph showing the percentage of cells bound by antibody at Day 3.
Potential Mechanisms for Thrombocytopenia Development with Trastuzumab Emtansine (T-DM1)

Hirdesh Uppal, Estelle Doudement, Kaushiki Mahapatra, et al.

Clin Cancer Res Published OnlineFirst November 4, 2014.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-14-2093

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2014/11/05/1078-0432.CCR-14-2093.DC1.html

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.